23 research outputs found

    A domain-specific analysis system for examining nuclear reactor simulation data for light-water and sodium-cooled fast reactors

    Full text link
    Building a new generation of fission reactors in the United States presents many technical and regulatory challenges. One important challenge is the need to share and present results from new high-fidelity, high-performance simulations in an easily usable way. Since modern multiscale, multi-physics simulations can generate petabytes of data, they will require the development of new techniques and methods to reduce the data to familiar quantities of interest (e.g., pin powers, temperatures) with a more reasonable resolution and size. Furthermore, some of the results from these simulations may be new quantities for which visualization and analysis techniques are not immediately available in the community and need to be developed. This paper describes a new system for managing high-performance simulation results in a domain-specific way that naturally exposes quantities of interest for light water and sodium-cooled fast reactors. It describes requirements to build such a system and the technical challenges faced in its development at all levels (simulation, user interface, etc.). An example comparing results from two different simulation suites for a single assembly in a light-water reactor is presented, along with a detailed discussion of the system's requirements and design.Comment: Article on NiCE's Reactor Analyzer. 23 pages. Keywords: modeling, simulation, analysis, visualization, input-outpu

    Assessement of tensile strength of graphites by the iosipescu coupon test

    Get PDF
    Polycrystalline graphites are widely used in the metallurgical, nuclear and aerospace industries. Graphites are particulated composites manufactured with a mixture of coke with pitch, and changes in relative proportions of these materials cause modifications in their mechanical properties. Uniaxial tension tests must be avoided for mechanical characterization in this kind of brittle material, due to difficulties in making the relatively long specimens and premature damages caused during testing set-up. On other types of tests, e.g. bending tests, the specimens are submitted to combined stress states (normal and transverse shear stresses). The Iosipescu shear test, is performed in a beam with two 90° opposite notches machined at the mid-length of the specimens, by applying two forces couples, so that a pure and uniform shear stress state is generated at the cross section between the two notches. When a material is isotropic and brittle, a failure at 45° in relation to the beam long axis can take place, i.e., the tensile normal stress acts parallel to the lateral surface of the notches, controls the failure and the result of the shear test is numerically equivalent to the tensile strength. This work has evaluated a graphite of the type used in rocket nozzles by the Iosipescu test and the resulted stress, ~11 MPa, was found to be equal to the tensile strength. Thus, the tensile strength can be evaluated just by a single and simple experiment, thus avoiding complicated machining of specimen and testing set-up

    Strain Gradient Plasticity: Theory and Implementation

    No full text
    This chapter focuses on the foundation and development of various higher-order strain gradient plasticity theories, and it also provides the basic elements for their finite element implementation. To this aim,we first refer to experiments exhibiting size-effects in metals and explain them by resorting to the concept of geometrically necessary dislocations. We then bring this concept to the continuum level by introducing Nye’s dislocation density tensor and by postulating the existence of higher-order stresses associated with dislocation densities. This provides the motivation for the development of higher-order strain gradient plasticity theories. For this purpose, we adopt the generalized principle of virtual work, initially illustrated for conventional crystal plasticity and subsequently extended to both crystal and phenomenological strain gradient plasticity theories
    corecore